Banking security: attacks and defences

Steven J. Murdoch

http://www.cl.cam.ac.uk/users/sjm217/

work with Ross Anderson, Mike Bond, Omar Choudary, Saar Drimer and Sergei Skorobogatov

UNIVERSITY OF CAMBRIDGE
Computer Laboratory

Tor

www.torproject.org

11 September 2012, Leuven, BE
Chip & PIN has now been running in the UK for about 7 years

- Chip & PIN, based on the EMV (EuroPay, MasterCard, Visa) standard, is deployed throughout most of Europe
- In process of roll-out elsewhere
- Customer inserts contact-smartcard at point of sale, and enters their PIN
- UK was an early adopter: rollout in 2003–2005; mandatory in 2006
- Chip & PIN changed many things, although not quite what people expected
Card payments in the UK are different from the elsewhere

<table>
<thead>
<tr>
<th></th>
<th>Before Chip & PIN</th>
<th>After Chip & PIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cards</td>
<td>magstripe</td>
<td>magstripe and chip</td>
</tr>
<tr>
<td>Card verification</td>
<td>magstripe</td>
<td>chip if possible</td>
</tr>
<tr>
<td>ATM</td>
<td>PIN used</td>
<td>PIN used</td>
</tr>
<tr>
<td>Point-of-sale</td>
<td>signature used</td>
<td>PIN used</td>
</tr>
</tbody>
</table>

- No difference between credit and debit cards
- No ID check at point-of-sale (signature rarely checked either)
- Introducing Chip & PIN really made two changes:
 - Chip used for authenticating card (ATM and PoS)
 - PIN used for authenticating customer (only new for PoS)
- The effects of the two changes are often conflated
UK fraud figures 2004–2011

<table>
<thead>
<tr>
<th>Year</th>
<th>Total, ex phone (£m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2004</td>
<td>503</td>
</tr>
<tr>
<td>2005</td>
<td>491.2</td>
</tr>
<tr>
<td>2006</td>
<td>591.4</td>
</tr>
<tr>
<td>2007</td>
<td>704.3</td>
</tr>
<tr>
<td>2008</td>
<td>529.6</td>
</tr>
<tr>
<td>2009</td>
<td>441</td>
</tr>
<tr>
<td>2010</td>
<td>410.6</td>
</tr>
</tbody>
</table>

Source: APACS/Financial Fraud Action UK
Counterfeit fraud mainly exploited backwards compatibility features

- Upgrading to Chip & PIN was too complex and expensive to complete in one step
- Instead, chip cards continued to have a magstrip
 - Used in terminals without functioning chip readers (e.g. abroad)
 - Act as a backup if the chip failed
- Chip also contained a full copy of the magstrip
 - Simplifies issuer upgrade
 - Chip transactions can be processed by systems designed to process magstrip
- Criminals changed their tactics to exploit these features, and so counterfeit fraud did not fall as hoped
- Fraud against UK cardholders moved outside of the UK
Criminals could now get cash

Criminals collected:

- card details by a “double-swipe”, or tapping the terminal/phone line
- PIN by setting up a camera, tapping the terminal, or just watching

Cloned magstrip card then used in an ATM (typically abroad)

In some ways, Chip & PIN made the situation worse

- PINs are used much more often (not just ATM)
- PoS terminals are harder to secure than an ATM
Protocol overview (as used in the UK)

Card \rightarrow PED
- Card details (account number, cardholder name, expiry, etc.)
- Public key certificate and static digital signature
- Copy of the magnetic strip details

PED \rightarrow Card
- Transaction description (value, currency, type, \textbf{unpredictable number})
- PIN as entered by customer

Card \rightarrow PED
- PIN verification result and authorisation code
News this morning

FINANCIAL TIMES

September 10, 2012 5:10 pm

Flaws in chip and pin uncovered

By Maija Palmer, technology correspondent

Chip and pin cards, brought in a decade ago to reduce counterfeit transactions, are more vulnerable to fraud than was believed, according to new research by academics at Cambridge University.

A large number of chip and pin terminals may be insecure, meaning card and transaction details can be captured by fraudsters.

The findings, which will be unveiled at the CHES cryptography conference in Leuven, Belgium on Tuesday, could force banks to issue more refunds to customers reporting fraudulent transactions on their cards.
Protocol overview (as used in the UK)

Card \rightarrow PED

- Card details (account number, cardholder name, expiry, etc.)
- Public key certificate and static digital signature
- Copy of the magnetic strip details \ast

PED \rightarrow Card

- Transaction description (value, currency, type, unpredictable number)
- PIN as entered by customer \ast

Card \rightarrow PED

- PIN verification result and authorisation code
Terminal tamper proofing is supposed to protect the PIN in transit

- In PoS transaction, PIN is sent from PIN entry device (PED) to card for verification
- Various standard bodies require that PEDs be tamper proofed: Visa, EMV, PCI (Payment Card Industry), APACS (UK bank industry body)
- Evaluations are performed to well-established standards (Common Criteria)
- Visa requirement states that defeating tamper-detection would take more than 10 hours or cost over USD $25,000 per PED
Protection measures: tamper switches

Ingenico i3300
Protection measures: tamper switches

Ingenico i3300
Protection measures: tamper meshes

Ingenico i3300
Protection measures: tamper meshes

Ingenico i3300
BBC Newsnight filmed our demonstration for national TV

BBC Newsnight, BBC2, 26 February 2008
Holes in the tamper mesh allow the communication line to be tapped

An easily accessible compartment can hide a recording device
This type of fraud is still a serious problem in the UK

Initially (2005), PEDs were tampered on a small scale and installed by someone impersonating a service engineer. PED was collected later, and card details extracted.

Now PEDs are being tampered with at or near their point of manufacture.

A cellphone module is inserted so it can send back lists of card numbers and PINs automatically.
Chip & PIN vulnerabilities

• Fallback vulnerabilities are not strictly-speaking a Chip & PIN vulnerability
• However, vulnerabilities do exist with Chip & PIN
• To understand these, we need some more background information
• To pay, the customer inserts their smart card into a payment terminal
• The chip and terminal exchange information, fulfilling three goals:
 • Card authentication: that the card presented is genuine
 • Cardholder verification: that the customer presenting the card is the authorized cardholder
 • Transaction authorization: that the issuing bank accepts the transaction
Terminology

Payment system network (MasterCard/Visa/etc.)

- Issuing bank
- Acquiring bank
- Cardholder
- Merchant
Terminology:

Issuing bank
Cardholder
Acquiring bank
Merchant
Payment system network (MasterCard/Visa/etc.)
Card presented
Authorization
Card issued
Authorization
Card presented
Terminology

Issuing bank

Cardholder

Acquiring bank

Payment system network (MasterCard/Visa/etc.)

Authorization

Payment

Card issued

Payment

Authorization

Payment

Card presented

Goods received
Simplified Chip & PIN transaction

1. Card details; digital signature
2. PIN entered by customer
3. PIN entered by customer; transaction description
4. PIN OK (yes/no); authorization cryptogram
5. Online transaction authorization (optional)
The YES-card attack

- Criminals can copy EMV chip cards
- This fake card will contain the correct digital signature
- Also, it can be programmed to accept any PIN (hence “YES”)
- However, the fake card can be detected by online transaction authorization
The YES-card attack

1. Card details; digital signature
2. Wrong PIN entered by crook
3. Wrong PIN entered by crook; transaction description
4. PIN OK (yes); Wrong cryptogram

fake card

Issuer

merchant
crook

2. Wrong PIN entered by crook

1. Card details; digital signature

3. Wrong PIN entered by crook; transaction description

4. PIN OK (yes); Wrong cryptogram
Defending against the YES-card

- YES-cards are responsible for a relatively small amount of fraud
- Can be detected by online transaction authorization
- Can also be detected by more advanced chip cards which can produce a dynamic digital signature
 - DDA (dynamic data authentication), as opposed to SDA (static data authentication)
 - Previously DDA cards were prohibitively expensive, but now cost about the same as SDA cards
- PIN verification can be performed online too, rather than allowing the card to do so
 - Need to securely send the PIN back to the issuer
 - UK ATMs use online PIN verification
 - UK point-of-sale terminals use offline PIN verification
The relay attack: Alice thinks she is paying $20, but is actually charged $2,000 for a purchase elsewhere.

Honest cardholder Alice and merchant Dave are unwitting participants in the relay attack.
The relay attack: Alice thinks she is paying $20, but is actually charged $2000 for a purchase elsewhere.

Alice inserts her card into Bob’s *fake* terminal, while Carol inserts a fake card into Dave’s *real* terminal. Using wireless communication the $2000 purchase is debited from Alice’s account.
We use the Hancke-Kuhn protocol, which we adapted to a wired, half-duplex implementation considering EMV constraints: a two wire interface and cheap prover
– the protocol starts with a mutual exchange of nonces.
The distance bounding protocol in detail...

- MACs are computed under shared key;
- verifier loads a shift register with random bits;
- prover splits MAC into two shift registers.
The distance bounding protocol in detail...

Timing critical phase:
– single bit challenge-response pairs are exchanged;
– response bit is the next bit from the shift register corresponding to the challenge bit’s content;
– response bit is deleted at prover and stored at verifier.
The distance bounding protocol in detail...

The verifier checks that the responses are correct and concludes, based on its timing settings, the maximum distance the prover is away...
The no-PIN attack

- The no-PIN attack allows criminals to use a stolen card without knowing its PIN
- It requires inserting a device between the genuine card and payment terminal
- This attack works even for online transactions, and DDA cards
BBC Newsnight filmed our demonstration for national TV

BBC Newsnight, BBC2, 11 February 2010
The no-PIN attack

1. Card details; digital signature

2. Wrong PIN entered by crook

3. **Wrong PIN entered by crook**; transaction description

4. PIN OK (yes); authorization cryptogram

5. Online transaction authorization (optional)

1/3/4. Card details; digital signature

2. Wrong PIN entered by crook
Current and proposed defences

- **Skimming**
 - iCVV: Slightly modifying copy of magnetic strip stored on chip
 - Disabling fallback: Preventing magnetic strip cards from being used in EMV-enabled terminals
 - Better control of terminals: Prevent skimmers from being installed
- **YES-card**
 - Dynamic Data Authentication (DDA): Place a public/private keypair on every card
 - Online authorization: Require that all transactions occur online
- **No-PIN attack**
 - Defences currently still being worked on
 - Extra consistency checks at issuer may be able to spot the attack
 - Combined DDA/Application Cryptogram Generation (CDA): Move public key authentication stage to the end
Deployment of Chip and PIN

- Chip and PIN was expensive for both all parties
- Deployment was encouraged through “liability engineering”

<table>
<thead>
<tr>
<th>Card</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>magstrip</td>
<td>Issuer</td>
</tr>
<tr>
<td>chip</td>
<td>Acquirer</td>
</tr>
<tr>
<td>chip & PIN</td>
<td>Acquirer</td>
</tr>
</tbody>
</table>

- Liability pushed down the chain: acquirer → merchant; issuer → customer
- Led to rapid deployment, but this caused some problems
- Still took 10 years
Random numbers?

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>UN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011-06-29</td>
<td>10:37:24</td>
<td>F1246E04</td>
</tr>
<tr>
<td>2011-06-29</td>
<td>10:37:59</td>
<td>F1241354</td>
</tr>
<tr>
<td>2011-06-29</td>
<td>10:38:34</td>
<td>F1244328</td>
</tr>
<tr>
<td>2011-06-29</td>
<td>10:39:08</td>
<td>F1247348</td>
</tr>
</tbody>
</table>
Reverse engineering
NCR ATM
Triton ATM (CPU board)
Triton ATM (DES board)
Surveying the problem
Characteristic C

<table>
<thead>
<tr>
<th>SRC2 EXP6</th>
<th>SRC2 EXP6B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 77028437</td>
<td>0 5D01BBCF</td>
</tr>
<tr>
<td>1 0D0AF8F9</td>
<td>1 760273FE</td>
</tr>
<tr>
<td>2 5C0E743C</td>
<td>2 730E5CE7</td>
</tr>
<tr>
<td>3 4500CE1A</td>
<td>3 380CA5E2</td>
</tr>
<tr>
<td>4 5F087130</td>
<td>4 580E9D1F</td>
</tr>
<tr>
<td>5 3E0CB21D</td>
<td>5 6805D0F5</td>
</tr>
<tr>
<td>6 6A05BAC3</td>
<td>6 530B6EF3</td>
</tr>
<tr>
<td>7 74057B71</td>
<td>7 4B0FE750</td>
</tr>
<tr>
<td>8 76031924</td>
<td>8 7B0F3323</td>
</tr>
<tr>
<td>9 390E8399</td>
<td>9 630166E1</td>
</tr>
</tbody>
</table>
Other ATMs

<table>
<thead>
<tr>
<th>Counters</th>
<th>Weak RNGs</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATM4</td>
<td>ATM1</td>
</tr>
<tr>
<td>eb661db4</td>
<td>690d4df2</td>
</tr>
<tr>
<td>ATM4</td>
<td>ATM1</td>
</tr>
<tr>
<td>2cb6339b</td>
<td>69053549</td>
</tr>
<tr>
<td>ATM4</td>
<td>ATM1</td>
</tr>
<tr>
<td>36a2963b</td>
<td>660341c7</td>
</tr>
<tr>
<td>ATM4</td>
<td>ATM1</td>
</tr>
<tr>
<td>3d19ca14</td>
<td>5e0fc8f2</td>
</tr>
<tr>
<td>ATM5</td>
<td>ATM2</td>
</tr>
<tr>
<td>F1246E04</td>
<td>6f0c2d04</td>
</tr>
<tr>
<td>ATM5</td>
<td>ATM2</td>
</tr>
<tr>
<td>F1241354</td>
<td>580fc7d6</td>
</tr>
<tr>
<td>ATM5</td>
<td>ATM2</td>
</tr>
<tr>
<td>F1244328</td>
<td>4906e840</td>
</tr>
<tr>
<td>ATM5</td>
<td>ATM2</td>
</tr>
<tr>
<td>F1247348</td>
<td>46099187</td>
</tr>
<tr>
<td>ATM3</td>
<td></td>
</tr>
<tr>
<td>650155D7</td>
<td></td>
</tr>
<tr>
<td>ATM3</td>
<td></td>
</tr>
<tr>
<td>7C0AF071</td>
<td></td>
</tr>
<tr>
<td>ATM3</td>
<td></td>
</tr>
<tr>
<td>7B021D0E</td>
<td></td>
</tr>
<tr>
<td>ATM3</td>
<td></td>
</tr>
<tr>
<td>1107CF7D</td>
<td></td>
</tr>
</tbody>
</table>
Stronger RNGs

<table>
<thead>
<tr>
<th>POS1</th>
<th>013A8CE2</th>
</tr>
</thead>
<tbody>
<tr>
<td>POS1</td>
<td>01FB2C16</td>
</tr>
<tr>
<td>POS1</td>
<td>2A26982F</td>
</tr>
<tr>
<td>POS1</td>
<td>39EB1E19</td>
</tr>
<tr>
<td>POS1</td>
<td>293FBA89</td>
</tr>
<tr>
<td>POS1</td>
<td>49868033</td>
</tr>
</tbody>
</table>
Cashing out

- Pre-play card: load with ARQCs for expected UNs
- Malware attack: tamper with ATM or POS terminal to produce predictable UNs
- Tamper with ATMs or POS in supply chain
- Collusive merchant, modifies software
- Tamper with communications
Mitigating the attack

- **Detection:**
 - Suspicious jumps in transaction counter
 - Lack of issuer authentication

- **Prevention:**
 - Relying party (issuer) generates the UN
 - Audit trail shows where UNs came from

- **Industry response so far has been mixed**
 - Details disclosed in early 2012
 - Some surprised by the problem
 - Others less so
 - Some knew of this problem but did not admit it
Conclusions

- Chip and PIN is far from secure: the card is probably the strongest part
- The complicated business relationships between parties makes analysing security complex
- Some proposed attacks still work: relay, no-PIN
- Others are being marginalized, but still work sometimes: yes-card, fallback
- Lack of understanding, and deliberate overstatement of security leads to customers being defrauded

More details and paper: http://www.lightbluetouchpaper.org/