Collusion in online competitions using covert channels

Inference Group Meeting
2 July 2003

Steven J. Murdoch

http://www.cl.cam.ac.uk/users/sjm217/

Security Group, Computer Laboratory, University of Cambridge
Summary

- Connect-4 competition
- Advantages of collusion
- Multi Level Security
- Covert channels for authentication
- Choosing a collusion strategy
- Results
Collusion in games can give a significant advantage

In Bridge partners should not be able to know the other’s cards
 • Many rules on what is permitted
 • Hard to enforce, often policed on the instincts of experts

In sports sometimes teams have colluded (normally against the rules)
Running example

- Rules of game like Connect-4
- However players can pass
- First stage of competition is a league
 - 2 points for a win, 1 point for a draw
- Top five go into a knockout stage
 - If there is a draw, CPU time and memory usage decide
Problem

- Because of passing rule no winning strategy exists
- However there is a fast drawing strategy (Piotr Zieliński)
- Solution: Enter multiple “drones”, draw against everyone except one player, who will get more points
Game strategy

- Based on one of the techniques used by L. Victor Allis for the original Connect-4 game.
Authentication

- For collusion an authentication mechanism is needed
- Normally easy, but harder in programming competitions
- Low bandwidth — 1 bit for simple case
- Must be high reliability
- Policy: Overt channels, such as sockets/IPC not permitted under competition rules
Multi Level Security (MLS)

- Bell-LaPadula policy used in military time sharing systems
- Risk of trojans being inserted at high privilege level
 - All data has a level, all programs have a level, all users have a clearance
 - No read up (program cannot read data with a higher level than itself)
 - No write down (program cannot write data with a lower level than itself)
Covert channels

- Channel which violates (write-down) security policy
- Timing Channels
 - CPU Load
 - Disk head scheduling
- Storage Channels
 - Process table exhaustion
 - Disk space
Covert channels in Connect-4

- Standard covert channels can be used
 - Complicated, noisy
 - Uses CPU time
- Move timing
 - Easier, less CPU time (sleep not counted)
 - Could be noisy
Moves as a covert channel 1

- For most strategies there is more than one equivalent move
- Till late in the game the outcome is undecided
- Use redundancy in move to send message
- Noise difficult to model
- So use (fast) PRNG to select move
- Linear congruential
 \[X_{n+1} = (A \times X_n + C) \mod Z \]
Moves as a covert channel 2

- Receiver knows:
 - Move number
 - Alternative moves
 - Opponents choice if it was a “friend (by using same PRNG)
 - If previous moves matched expectation
- Winning player needs no detection system, both faster and less suspicious
Strategy 1

- For league stage, collusion works
- For knockout tournaments, it doesn’t
 - Exception where order is known and cycle in graph of results
Strategy 2

- So enter 5 players to win rather than 1
- Also have multiple classes, to give advantage to optimised programs
 - However the more classes the higher the risk of false positives
- Risk of very poor programs
 - Programs that try to win will win against the bad players more than our players (which almost always draw)
Results 1

Possible move sequences vs Move number

Move number:
1 2 3 4 5 6 7 8 9 10

Possible move sequences:
10000 10000 10000 10000 10000 10000 10000 10000 10000 10000

Collusion in online competitions using covert channels – p.15/17
Results 2

<table>
<thead>
<tr>
<th>Name</th>
<th>Played</th>
<th>Won</th>
<th>Drew</th>
<th>Lost</th>
<th>Points</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maleficent</td>
<td>84</td>
<td>58</td>
<td>26</td>
<td>0</td>
<td>142</td>
<td>0</td>
</tr>
<tr>
<td>NCC1703</td>
<td>84</td>
<td>58</td>
<td>26</td>
<td>0</td>
<td>142</td>
<td>0</td>
</tr>
<tr>
<td>Flounder</td>
<td>84</td>
<td>51</td>
<td>29</td>
<td>4</td>
<td>131</td>
<td>1</td>
</tr>
<tr>
<td>NCC1707</td>
<td>84</td>
<td>49</td>
<td>31</td>
<td>4</td>
<td>129</td>
<td>1</td>
</tr>
<tr>
<td>Ratigan</td>
<td>84</td>
<td>49</td>
<td>31</td>
<td>4</td>
<td>129</td>
<td>1</td>
</tr>
<tr>
<td>NCC1705</td>
<td>84</td>
<td>48</td>
<td>32</td>
<td>4</td>
<td>128</td>
<td>1</td>
</tr>
<tr>
<td>7 others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>88–99</td>
<td>—</td>
</tr>
<tr>
<td>24 drones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72–75</td>
<td>2</td>
</tr>
<tr>
<td>6 “rabbits”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>54–71</td>
<td>—</td>
</tr>
</tbody>
</table>
Results 3