Feedback on talks so far

• Very good so far, well done
• Speak to the audience: slides are on monitor and practice helps
• For a 10 minute presentation, you don’t need to spend a slide just on the plan
• Final slide – help discussion, not cute clipart
• Careful about font size: Figures should be re-drawn preferably, same applies for demos
• I’m not going to suggest dressing in any particular way but do bear this in mind for professional talks
Poor Research Design

What research problem can I think of, which involves a user study and would use my security software?

• What is wrong with this approach?
Research Design in Context

• Remember to follow the scientific method
 • Identify the research problem
 • Specify purpose of research
 • Determine hypotheses/research question
 • Carry out a literature review
• **Determine best research method**
 • **Study, develop software, mathematical proof**
• Carry out research - data collection
• Analyse data
• Report results
• Draw conclusions from research
• Adjust theory
Research Types

• Primary research
 • Using primary sources and/or data
 • Often used by historians – e.g. studying ancient documents
 • Analysis of raw data from existing or new studies

• Secondary research
 • Using secondary sources
 • Synthesis or analysis of existing discussions of primary sources
 • Case studies
 • Meta-analyses
 • Literature survey
Qualitative Research

• Often a fairly broad research question
• Good for exploratory research
• Address questions about human behaviour
• Data collected is usually word-type
• Used in social and management sciences
Qualitative Research

- Not quantifiably measuring variables
- Not looking for relationship between variables
- Expensive and time consuming to undertake
- Usually small sample sizes
NVivo
Quantitative Research

- Narrow research question
- Empirical investigation of quantitative properties and their relationships
 - Need to clearly identify variables for experiment
 - Different types of variables (see later slides)
- Data collected is numeric
Quantitative Research

• Data analysed with statistical methods
 • Correlations, regression, means, standard deviations, chi-square (χ^2) for categorical data etc.

• Looking for relationships between variables
 • Correlation and causation
Tools for quantitative research

• Excel
 • Dangerous: easy to make errors, scales poorly, limited number of techniques

• R
 • Excellent set of libraries connected to mediocre programming language

• Python
 • Good set of libraries connected to good programming language

• Julia
 • Promising approach, but still in rapid development
Repeatability in analysis

• Repeatability is just as important in analysis as it is in performing experiments
• Tools can help here
• Minimum requirement: version control (e.g. Git, Subversion, Mercurial, Bazaar)
• Strongly recommended: tool to manage experimental runs: e.g Sumarta, Vistrails
 • Logs what tools were run and from where output came from (version and parameters)
Mixture of Methods

• Possible study #1
 • Code transcripts from focus groups (qualitative)
 • Answers from a survey (quantitative)
 • Categorical variables e.g. age, education
 • Investigate relationship between categorical variables and codes from transcripts
 • Chi-square analysis

• Possible study #2
 • Q methodology – identify different viewpoints
 • Participants order statements - “Q-sort”
 • Results of Q-sort undergo factor analysis
A Good Experiment

• **Reminder**: Experiments manipulate the topic under study
 • Different from observational study

• Provides sufficient data to support or refute the hypothesis – i.e. experiment is valid
A Good Experiment

- Only tests one variable
 - If more than one variable, which one affected result?
- Is unbiased – researcher does not let their opinions influence the experiment
- Is repeated – not a ‘one-off’
- Attempts to remove all external factors which may influence experiment
 - e.g. lab environment, time of day, equipment, etc.
 - Really difficult to achieve with human subjects
Variables

• Something in an experiment which can vary, or be deliberately changed by the experimenter
 • e.g. temperature of gas, height a ball dropped from, length of password in characters

• Sometimes researcher not aware of all variables influencing an experiment
 • e.g. Trying to measure affect of keyboard design on typing speed, but perhaps temperature of room influences participants’ typing speed.
Types of Variables

• Independent variable (sometimes called factor)
 • Manipulated by the researcher – e.g. password length
 • Experiment must only change one variable

• Dependent variable
 • Hypothesized to change if independent variable changes
 • Effect is observed and measured - data collected
 • State how dependent variable measured and units

• Controlled variable
 • Variable not allowed to change
Independent & Dependent Variables

• Charles’s Law – simply put
 • As temperature increases – volume of gas expands
 • As temperature decreases – volume of gas decreases

• Design the experiment
 • What could be the independent variable?
 • What could be the dependent variable?
 • What could be a controlled variable?
Control Group

• Some studies have a control group
 • Different from a controlled variable
• What happens if independent variable is not changed?
 • Not all experiments have control groups
 • Common in drug trials – use of placebos
• Could you have a control group with an information security experiment?
Within Subjects/Paired Design

- Each participant has one treatment and two measurements
 - One sample group of participants
 - e.g. time to complete a task before and after training
- Advantages
 - Few subjects – can be quicker
 - Removes risk of introducing confounding variables
- Disadvantages
 - Participants may drop out
 - Need to remove them from data set
 - Participants may suffer from fatigue and practice effects
Between Subjects/Independent Design

- Two or more groups of participants have same treatment and measured once
 - e.g. measure of privacy concern between old and young
 - Look for statistically significant difference between means of groups
- Advantages
 - Less risk of participants dropping out
 - Participants unlikely to suffer fatigue and practice effects
- Disadvantages
 - Higher risk of introducing confounding variables
 - More participants needed – takes more time
Sampling Bias

- Statistical term
- Important in surveys and user trials
- Sample population not representative of total population
 - Members of total population less likely to be included in sample
 - Non-random sample - all individuals not equally likely to be selected
Sampling Bias

• Examples
 • People at a local painting club used to determine views concerning funding of the arts in the UK – (qualitative)
 • Average male height in UK determined by measuring people in local basketball team – (quantitative)

• Aim to minimise bias
 • Papers likely to be criticised if there is obvious sampling bias

• Undermines ability to generalise to total population
• Also impacts between subjects/independent experiment design
WEIRD

- Experiments typically performed on:
 - Western
 - Educated
 - Industrialized
 - Rich
 - Democratic countries
- Around 12% of the population
Which line is longer? (Müller-Lyer illusion)
The weirdest people in the world? Henrich et al. (2010)
Selection Bias

• Selection bias leads to sampling bias
 • Terms often used interchangeably (incorrectly)
 • Sampling bias is a sub-type of selection bias
• Other types of selection bias:
 • Terminate trial when result achieved
 • Discounting drop outs