Overall Mark for summaries on Moodle is misleading

- Moodle shows an “Overall Mark” for your paper summaries, which is the average of the two summaries you will submit.
- The second unsubmitted summary gets assigned the default mark of 0% so your overall mark is \((\text{first mark} + 0\%) / 2 = \text{first mark} / 2\)
- Once your second summary is marked the overall mark will be correct, and this will go into Portico.
- Results are unconfirmed and provisional and are subject to change by the Board of Examiners and UCL Education Committee.
Counterfactual reasoning to establish causality

• Statistics gives us correlations, which are not the same as causation

• Causation can be shown by re-winding time and changing one thing
 • Hypothesis: not studying causes poor grades
 • Wind back time, start studying, do grades improve?

• Good experiments approximate re-winding time in order to show causality
A Good Experiment

• **Reminder**: Experiments manipulate the topic under study
 • Different from observational study

• Provides sufficient data to support or refute the hypothesis – i.e. experiment is **valid**
A Good Experiment

• Only tests one variable
 • If more than one variable, which one affected result?
• Is unbiased – researcher does not let their opinions influence the experiment
• Is repeated – not a ‘one-off’
• Attempts to remove all external factors which may influence experiment
 • e.g. lab environment, time of day, equipment, etc.
 • Really difficult to achieve with human subjects
Variables

• Something in an experiment which can vary, or be deliberately changed by the experimenter
 • e.g. temperature of gas, height a ball dropped from, length of password in characters

• Sometimes researcher not aware of all variables influencing an experiment
 • e.g. Trying to measure affect of keyboard design on typing speed, but perhaps temperature of room influences participants’ typing speed.
Types of Variables

- **Independent variable** (sometimes called factor)
 - Manipulated by the researcher – e.g. password length
 - Experiment must only change one variable
- **Dependent variable**
 - Hypothesized to change if independent variable changes
 - Effect is observed and measured - data collected
 - State how dependent variable measured and units
- **Controlled variable**
 - Variable not allowed to change
Independent & Dependent Variables

• Charles’s Law – simply put
 • As temperature increases – volume of gas expands
 • As temperature decreases – volume of gas decreases

• Design the experiment
 • What could be the independent variable?
 • What could be the dependent variable?
 • What could be a controlled variable?
Control Group

- Some studies have a control group
 - Different from a controlled variable
- What happens if independent variable is not changed?
 - Not all experiments have control groups
 - Common in drug trials – use of placebos
- Could you have a control group with an information security experiment?
Within Subjects/Paired Design

• Each participant has one treatment and two measurements
 • One sample group of participants
 • e.g. time to complete a task before and after training
• Advantages
 • Few subjects – can be quicker
 • Removes risk of introducing confounding variables
• Disadvantages
 • Participants may drop out
 • Need to remove them from data set
 • Participants may suffer from fatigue and practice effects
Between Subjects/Independent Design

- Two or more groups of participants have same treatment and measured once
 - e.g. measure of privacy concern between old and young
 - Look for statistically significant difference between means of groups
- Advantages
 - Less risk of participants dropping out
 - Participants unlikely to suffer fatigue and practice effects
- Disadvantages
 - Higher risk of introducing confounding variables
 - More participants needed – takes more time
Sampling Bias

• Statistical term
• Important in surveys and user trials
• Sample population not representative of total population
 • Members of total population less likely to be included in sample
 • Non-random sample - all individuals not equally likely to be selected
Sampling Bias

- **Examples**
 - People at a local painting club used to determine views concerning funding of the arts in the UK – (qualitative)
 - Average male height in UK determined by measuring people in local basketball team – (quantitative)

- **Aim to minimise bias**
 - Papers likely to be criticised if there is obvious sampling bias

- Undermines ability to generalise to total population
- Also impacts between subjects/independent experiment design
WEIRD

• Experiments typically performed on:
 • Western
 • Educated
 • Industrialized
 • Rich
 • Democratic countries
• Around 12% of the population
Which line is longer? (Müller-Lyer illusion)
The weirdest people in the world? Henrich et al. (2010)
Selection Bias

• Selection bias leads to sampling bias
 • Terms often used interchangeably (incorrectly)
 • Sampling bias is a sub-type of selection bias

• Other types of selection bias:
 • Terminate trial when result achieved
 • Discounting drop outs
Selection and Sampling Bias

- **Selection Bias**
 - Asking your friends to take part in your study

- **Sampling Bias**
 - Sample not representative of total UK/world population

- In Method section of paper
 - Provide description of selection process and any limitations
 - Provided description of sample collected and any limitations
Structured Sampling

- May want to deliberately manage sampling
- Deliberately select participants based on criteria
- Example:
 - Focus groups to discuss television viewing habits
 - Objective of selection process is to get a good coverage of ages and regions in the UK
Quantitative Research

• Historical roots in positivism
 • Goal is to find laws that explain the real world
 • Identify causal links between things
 • Knowledge is only obtained through experience and observation
• Facts are separated from values
• Science is based on quantitative data obtained through rigorous processes
Quantitative Research

- Types of variables
 - Categorical variables
 - Binary (e.g. yes/no)
 - Nominal (e.g. males, females)
 - Ordinal (e.g. strongly/somewhat agree/disagree)
 - Continuous variables
 - Interval (e.g. temperature in degrees Fahrenheit)
 - Ratio (e.g. natural zero point e.g. degrees Kelvin)
Quantitative Research

• Measurement error
 • Discrepancy between real value of a variable and measurement obtained
 • Instruments can be calibrated to reduce measurement error
 • Self-reported measures can also have measurement error because participants may have a reason to lie
Quantitative Research

• Validity
 • Whether an instrument measures what it is supposed to measure
 • e.g. Can we use password length to measure password complexity?
• Content validity
 • Whether the questions in a questionnaire cover the full range of a construct
• Reliability
 • Whether a measure produces the same results under the same conditions
Quantitative Research

• Correlational Research
 • Observe what happens in the world without interfering
 • Measure two or more variables at one point in time
 • e.g. Measure complexity of passwords used by employees in one organisation and which ones write them down
 • Minimises researcher bias
 • Contributes to external validity (ecological validity)
• Note: Correlation does not imply causality!
Questionnaires

• “Feel the pulse” of a specific population about a topic
• Collect small amount of data from large sample
• Aim to get sample representative of population

• Advantages
 • Efficient
 • Statistical significance
 • Simplicity
 • Transparency
 • Credible results

• Disadvantages
 • Require high technical proficiency to design
 • Only measure attitudes, not behaviour
 • e.g. self-selection bias of more private individuals!
Experimental Research

- Manipulate one variable to see effect on another variable (remember independent/dependent variables)
 - e.g. create passwords with different complexities and assign them to different participants. Take note of which ones resort to writing them down
- Cause and effect (David Hume)
 - Events must occur close together in time
 - Cause must precede the effect
 - Effect never occurs without the cause
- Confounding variables may cause both events:
 - Cause never occurs without the effect
Experiments

• Between-groups design
 • Manipulate the independent variable with different participants
 • Each group of participants is tested under different experimental conditions
 • Differences between people (e.g. IQ) can lead to unsystematic variation in results
Experiments

• Within-subjects design
 • Manipulate the independent variable with same participants
 • Every participants goes through all the experimental conditions
 • Can introduce learning and boredom/fatigue effects
Laboratory experiments

• Advantages:
 • Control over environment
 • Replicable
 • Allows the determination of cause and effect
 • Statistical significance
 • Capture behaviour, not just attitudes

• Disadvantages
 • Artificiality
 • Researcher bias
 • Demand bias (participants guess what the experiment is about)
Qualitative Research

• Associated with **constructivism**
 • Reality is a social construction
 • Capture multiple perspectives of same phenomenon
 • Context in which data was collected is very important
 • Relationship between researcher and object/subject of research is taken into account
Qualitative Research

• Qualitative data has no variables per se
 • But, you can generate some:
 • e.g. Counting instances of a code / theme
 • e.g. Correlation between code and age group
Interviews

- Conducted with less people than questionnaires
- Can be structured, semi-structured, or unstructured

Advantages
- Flexible
- Rich interactions
- Generate secondary level data such as body language or tone of voice

Disadvantages:
- Standardisation is hard
- Less reliability
- Researcher bias
- Time consuming
- Only measure attitudes
Focus groups

- Group interviews between 4–12 participants
- Group can be homogeneous or heterogeneous

Advantages
- Participants interact with each other
- Efficient
- Extreme views are kept in check by the group
- Enjoyable to participants

Disadvantages
- Difficult to manage
- Dominating personalities
- Small sample sizes make it difficult to generalise results
- Group dynamic bias
Asch conformity experiment
(Solomon Asch, 1951)
Diary methods

- Participants record their own experiences
- Capture data in natural contexts
- Substitute for observation

Advantages
- Report of experience close in time to actual experience
- Data generated by participant

Disadvantages
- Require lots of training and briefing of participants
- Time consuming for participants
- Participants may want to please researcher (bias)